Category:Sampling Function

From ProofWiki
Jump to navigation Jump to search

This category contains results about Sampling Function.
Definitions specific to this category can be found in Definitions/Sampling Function.

The sampling function is the distribution $\operatorname {III}_T: \map \DD \R \to \R$ defined as:

$\forall x \in \R: \map {\operatorname {III}_T } x := \ds \sum_{n \mathop \in \Z} \map \delta {x - T n}$


$T \in \R_{\ne 0}$ is a non-zero real number
$\delta$ denotes the Dirac delta distribution.

When $T = 1$, it is usually omitted:

$\forall x \in \R: \map {\operatorname {III} } x := \ds \sum_{n \mathop \in \Z} \map \delta {x - n}$

Pages in category "Sampling Function"

This category contains only the following page.