Category:Set Equivalence

From ProofWiki
Jump to navigation Jump to search

This category contains results about Set Equivalence.


Let $S$ and $T$ be sets.

Then $S$ and $T$ are equivalent if and only if:

there exists a bijection $f: S \to T$ between the elements of $S$ and those of $T$.

That is, if they have the same cardinality.


This can be written $S \sim T$.


If $S$ and $T$ are not equivalent we write $S \nsim T$.

Pages in category "Set Equivalence"

The following 3 pages are in this category, out of 3 total.