Category:Superabundant Numbers

From ProofWiki
Jump to navigation Jump to search

This category contains results about Superabundant Numbers.


Let $n \in \Z_{>0}$ be a positive integer.

Then $n$ is superabundant if and only if:

$\forall m \in \Z_{>0}, m < n: \dfrac {\map \sigma m} m < \dfrac {\map \sigma n} n$

where $\map \sigma n$ is the $\sigma$ function of $n$.