# Category:T3 Spaces

Jump to navigation
Jump to search

This category contains results about $T_3$ spaces in the context of Topology.

$T = \struct {S, \tau}$ is a **$T_3$ space** if and only if:

- $\forall F \subseteq S: \relcomp S F \in \tau, y \in \relcomp S F: \exists U, V \in \tau: F \subseteq U, y \in V: U \cap V = \O$

That is, for any closed set $F \subseteq S$ and any point $y \in S$ such that $y \notin F$ there exist disjoint open sets $U, V \in \tau$ such that $F \subseteq U$, $y \in V$.

## Subcategories

This category has the following 2 subcategories, out of 2 total.

## Pages in category "T3 Spaces"

The following 28 pages are in this category, out of 28 total.