# Category:Triangular Matrices

Jump to navigation
Jump to search

This category contains results about Triangular Matrices.

Let $\mathbf T = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn} \\
\end{bmatrix}$ be a square matrix of order $n$.

Then $\mathbf T$ is a **triangular matrix** if all the elements either above or below the diagonal are zero.

## Subcategories

This category has only the following subcategory.

## Pages in category "Triangular Matrices"

The following 7 pages are in this category, out of 7 total.