Category:Tschirnhaus Transformations

From ProofWiki
Jump to navigation Jump to search

This category contains results about Tschirnhaus Transformations.

Let $\map f x$ be a polynomial over a field $k$:

$\map f x = a_n x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + \cdots + a_1 x + a_0$

Then the Tschirnhaus transformation is the linear substitution $x = y - \dfrac {a_{n - 1} } {n a_n}$.

The Tschirnhaus transformation produces a resulting polynomial $\map {f'} y$ which is depressed, as shown on Tschirnhaus Transformation yields Depressed Polynomial.

This technique is used in the derivation of Cardano's Formula for the roots of the general cubic.

Pages in category "Tschirnhaus Transformations"

This category contains only the following page.