# Category:Union of Adjacent Open Intervals

Jump to navigation
Jump to search

This category contains results about the union of adjacent open intervals $\left({a \,.\,.\, b}\right) \cup \left({b \,.\,.\, c}\right)$ under the usual topology.

Let $\left({\R, \tau_d}\right)$ be the real number line $\R$ under the usual (Euclidean) topology $\tau_d$.

Let $a, b, c \in \R$ where $a < b < c$.

Let $A$ be the union of the two open intervals:

- $A := \left({a \,.\,.\, b}\right) \cup \left({b \,.\,.\, c}\right)$

Then $\left({A, \tau_d}\right)$ is the **union of adjacent open intervals**.

## Pages in category "Union of Adjacent Open Intervals"

The following 6 pages are in this category, out of 6 total.