Cauchy's Integral Formula/General Result/Corollary
Jump to navigation
Jump to search
Theorem
Let $\map G z$ be the generating function for the sequence $\sequence {a_n}$.
Let the coefficient of $z^n$ extracted from $\map G z$ be denoted:
- $\sqbrk {z^n} \map G z := a_n$
Let $\map G z$ be convergent for $z = z_0$ and $0 < r < \cmod {z_0}$.
Then:
- $\sqbrk {z^n} \map G z = \ds \frac 1 {2 \pi i} \oint_{\cmod z \mathop = r} \dfrac {\map G z \d z} {z^{n + 1} }$
Proof
\(\ds \sqbrk {z^n} \map G z\) | \(=\) | \(\ds \dfrac 1 {n!} \map {G^{\paren n} } 0\) | Derivative of Generating Function: Corollary | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {n!} \paren {\dfrac {n!} {2 \pi i} \int_{\partial D} \frac {\map G z} {z^{n + 1} } \d z}\) | Cauchy's Integral Formula for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \pi i} \oint_{\cmod z \mathop = r} \dfrac {\map G z \d z} {z^{n + 1} }\) |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.9$: Generating Functions: $(32)$