Cauchy Sequence in Positive Integers under Scaled Euclidean Metric
Jump to navigation
Jump to search
Theorem
Let $\Z_{>0}$ be the set of (strictly) positive integers.
Let $\delta: \Z_{>0} \times \Z_{>0} \to \R$ be the scaled Euclidean metric on $\Z_{>0}$ defined as:
- $\forall x, y \in \Z_{>0}: \map \delta {x, y} = \dfrac {\size {x - y} } {x y}$
The sequence $\sequence {x_n}$ in $\Z_{>0}$ defined as:
- $\forall n \in \N: x_n = n$
is a Cauchy sequence in $\struct {\Z_{>0}, \delta}$.
Proof
For a general $x_m, x_n \in \sequence {x_n}$ as defined:
\(\ds \map \delta {x, y}\) | \(=\) | \(\ds \frac {\size {x_m - x_n} } {x_m x_n}\) | Definition of $\delta$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {\frac 1 {x_m} - \frac 1 {x_n} }\) | algebra | |||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds \size {\frac 1 m - \dfrac 1 n}\) | Definition of $\sequence {x_n}$ |
Let $\epsilon \in \R_{>0}$.
Then by the Axiom of Archimedes:
- $\exists N \in \N: N > \dfrac 1 \epsilon$
from which it follows that:
- $\epsilon > \dfrac 1 N$
Thus:
\(\ds \forall m, n \in \N: \, \) | \(\ds m, n\) | \(>\) | \(\ds N\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \delta {x_m, x_n}\) | \(=\) | \(\ds \size {\frac 1 m - \frac 1 n}\) | from $(1)$ above | ||||||||||
\(\ds \) | \(<\) | \(\ds \max \set {\frac 1 m, \frac 1 n}\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \frac 1 N\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \epsilon\) |
Therefore $\sequence {x_n}$ is a Cauchy sequence in $\struct {\Z_{>0}, \delta}$.
$\blacksquare$
Sources
- 1978: Lynn Arthur Steen and J. Arthur Seebach, Jr.: Counterexamples in Topology (2nd ed.) ... (previous) ... (next): Part $\text {II}$: Counterexamples: $32$. Special Subsets of the Real Line: $10$