Cayley-Dickson Construction from Nicely Normed Algebra is Nicely Normed
Theorem
Let $A = \left({A_F, \oplus}\right)$ be a $*$-algebra.
Let $A' = \left({A_F, \oplus'}\right)$ be constructed from $A$ using the Cayley-Dickson construction.
Then $A'$ is a nicely normed algebra if and only if $A$ is also a nicely normed algebra.
Proof
Let the conjugation operator on $A$ be $*$.
Let $\left({a, b}\right), \left({c, d}\right) \in A'$.
In order to streamline notation, let $\oplus$ and $\oplus'$ both be denoted by product notation:
- $a \oplus b =: a b$
- $x \oplus' y =: x y$
The context will make it clear which is meant.
Let $A$ be a nicely normed algebra.
Then:
\(\ds \left({a, b}\right) + \left({a, b}\right)^*\) | \(=\) | \(\ds \left({a, b}\right) + \left({a^*, -b}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left({a + a^*, b - b}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left({a + a^*, 0}\right)\) |
As $A$ is itself nicely normed, we have that $a + a^*$ is real.
Hence it follows that $\left({a + a^*, 0}\right)$ is real.
Next:
\(\ds \left({a, b}\right) \left({a, b}\right)^*\) | \(=\) | \(\ds \left({a, b}\right) \left({a^*, -b}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left({a a^* - \left({-b b^*}\right), a^* b + \left({-a^* b}\right)}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left({\left \Vert {a} \right \Vert^2 + \left \Vert {b} \right \Vert^2, 0}\right)\) | as $A$ is nicely normed |
We have by definition of norm that $\left \Vert {a} \right \Vert^2 + \left \Vert {b} \right \Vert^2$ is real.
Hence it follows that $\left({\left \Vert {a} \right \Vert^2 + \left \Vert {b} \right \Vert^2, 0}\right)$ is real.
It follows from reversing the argument that if $A'$ is not nicely normed then nor will $A$ be.
$\blacksquare$
Sources
- John C. Baez: The Octonions (2002): 2.2 The Cayley-Dickson Construction: Proposition $5$