Cayley-Hamilton Theorem
Theorem
Cayley-Hamilton for Finitely Generated Modules
Let $A$ be a commutative ring with unity.
Let $M$ be a finitely generated $A$-module.
Let $\mathfrak a$ be an ideal of $A$.
Let $\phi$ be an endomorphism of $M$ such that $\map \phi M \subseteq \mathfrak a M$.
Then $\phi$ satisfies an equation of the form:
- $\phi^n + a_{n-1} \phi^{n-1} + \cdots + a_1 \phi + a_0 = 0$
with the $a_i \in \mathfrak a$.
Cayley-Hamilton for Matrices
Let $A$ be a commutative ring with unity.
Let $\mathbf N = \left({a_{ij} }\right)$ be an $n \times n$ matrix with entries in $A$.
Let $\mathbf I_n$ denote the $n \times n$ unit matrix.
Let $p_N \left({x}\right)$ be the determinant $\det \left({x \cdot \mathbf I_n - \mathbf N}\right)$.
Then:
- $p_N \left({N}\right) = \mathbf 0$
as an $n \times n$ zero matrix.
That is:
- $ N^n + b_{n-1} N^{n-1} + \cdots + b_1 N + b_0 = \mathbf 0$
where the $b_i$ are the coefficients of $p_N \left({x}\right)$.
Also see
Source of Name
This entry was named for Arthur Cayley and William Rowan Hamilton.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Entry: Cayley-Hamilton theorem
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Entry: Cayley-Hamilton theorem
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Entry: Cayley-Hamilton Theorem