Ceiling of Floor is Floor

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a real number.

Let $\floor x$ denote the floor of $x$, and $\ceiling x$ denote the ceiling of $x$.


Then:

$\ceiling {\floor x} = \floor x$


That is, the ceiling of the floor is the floor.


Proof

Let $y = \floor x$.

By Floor Function is Integer, we have that $y \in \Z$.

Then from Real Number is Integer iff equals Ceiling, we have:

$\ceiling y = y$

So:

$\ceiling {\floor x} = \floor x$

$\blacksquare$


Also see


Sources