Change of Index Variable of Supremum
Jump to navigation
Jump to search
Theorem
Let $\family {a_i}{i \mathop \in I}$ be a family of elements of the non-negative real numbers $\R_{\ge 0}$ indexed by $I$.
Let $\map R i$ be a propositional functions of $i \in I$.
Let $\displaystyle \sup_{\map R i} a_i$ be the indexed supremum on $\family {a_i}$.
Then:
- $\displaystyle \sup_{\map R i} a_i = \sup_{\map R j} a_j$
Proof
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.3$: Sums and Products: Exercise $35$