# Characterisation of Cauchy Sequence in Non-Archimedean Norm

## Theorem

Let $\struct {R, \norm {\,\cdot\,} }$ be a normed division ring with non-Archimedean norm $\norm {\,\cdot\,}$.

Let $\sequence {x_n}$ be a sequence in $R$.

Then:

$\sequence {x_n}$ is a Cauchy sequence if and only if $\displaystyle \lim_{n \mathop \to \infty} \norm {x_{n + 1} - x_n} = 0$.

### Corollary

Let $\norm {\,\cdot\,}_p$ be the $p$-adic norm on the rationals $\Q$ for some prime $p$.

Let $\sequence {x_n}$ be a sequence of integers such that:

$\forall n: x_{n + 1} \equiv x_n \pmod {p^n}$

Then:

$\sequence {x_n}$ is a Cauchy sequence in $\struct {\Q, \norm {\,\cdot\,}_p}$.

## Proof

### Necessary Condition

Let $\epsilon > 0$ be given.

By the definition of a Cauchy sequence:

$\exists N: \forall n, m > N: \norm {x_n - x_m} < \epsilon$

So

$\exists N: \forall n > N: \norm {x_{n + 1} - x_n} < \epsilon$

Hence the result follows:

$\lim_{n \mathop \to \infty} \norm {x_{n + 1} - x_n} = 0$.

$\Box$

### Sufficient Condition

Let $\epsilon > 0$ be given.

By assumption $\exists N \in \N$ such that:

$(1) \quad \forall n > N: \norm {x_{n + 1} - x_n} < 0$

Suppose $n, m > N$, and $m = n + r > n$.

Then:

 $\displaystyle \norm {x_m - x_n}$ $=$ $\displaystyle \norm {x_{n + r} - x_{n + r - 1} + x_{n + r - 1} - x_{n + r - 2} + \dotsb + x_{n + 1} - x_n}$ $\displaystyle$ $=$ $\displaystyle \max \set {\norm {x_{n + r} - x_{n + r - 1} }, \norm {x_{n + r - 1} - x_{n + r - 2} }, \dotsc, \norm {x_{n + 1} - x_n} }$ as $\norm {\,\cdot\,}$ is non-Archimedean $\displaystyle$ $=$ $\displaystyle \norm {x_{n + s} - x_{n + s - 1} }$ for some $s$: $0 < s \le r$ $\displaystyle$ $<$ $\displaystyle \epsilon$ by $(1)$

It follows that:

$\sequence {x_n}$ is a Cauchy sequence.

$\blacksquare$