Characterisation of Cauchy Sequence in Non-Archimedean Norm
Jump to navigation
Jump to search
Theorem
Let $\struct {R, \norm {\, \cdot \,} }$ be a normed division ring with non-Archimedean norm $\norm {\, \cdot \,}$.
Let $\sequence {x_n}$ be a sequence in $R$.
Then:
- $\sequence {x_n}$ is a Cauchy sequence
- $\ds \lim_{n \mathop \to \infty} \norm {x_{n + 1} - x_n} = 0$
Corollary
Let $\norm {\,\cdot\,}_p$ be the $p$-adic norm on the rationals $\Q$ for some prime $p$.
Let $\sequence {x_n}$ be a sequence of integers such that:
- $\forall n: x_{n + 1} \equiv x_n \pmod {p^n}$
Then:
- $\sequence {x_n}$ is a Cauchy sequence in $\struct {\Q, \norm {\,\cdot\,}_p}$.
Proof
Necessary Condition
Let $\epsilon > 0$ be given.
By the definition of a Cauchy sequence:
- $\exists N: \forall n, m > N: \norm {x_n - x_m} < \epsilon$
So
- $\exists N: \forall n > N: \norm {x_{n + 1} - x_n} < \epsilon$
Hence the result follows:
- $\lim_{n \mathop \to \infty} \norm {x_{n + 1} - x_n} = 0$.
$\Box$
Sufficient Condition
Let $\epsilon > 0$ be given.
By assumption $\exists N \in \N$ such that:
- $(1) \quad \forall n > N: \norm {x_{n + 1} - x_n} < 0$
Suppose $n, m > N$, and $m = n + r > n$.
Then:
\(\ds \norm {x_m - x_n}\) | \(=\) | \(\ds \norm {x_{n + r} - x_{n + r - 1} + x_{n + r - 1} - x_{n + r - 2} + \dotsb + x_{n + 1} - x_n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \max \set {\norm {x_{n + r} - x_{n + r - 1} }, \norm {x_{n + r - 1} - x_{n + r - 2} }, \dotsc, \norm {x_{n + 1} - x_n} }\) | as $\norm {\,\cdot\,}$ is non-Archimedean | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm {x_{n + s} - x_{n + s - 1} }\) | for some $s$: $0 < s \le r$ | |||||||||||
\(\ds \) | \(<\) | \(\ds \epsilon\) | by $(1)$ |
It follows that:
- $\sequence {x_n}$ is a Cauchy sequence.
$\blacksquare$
Sources
- 1997: Fernando Q. Gouvea: p-adic Numbers: An Introduction ... (previous) ... (next): $\S 3.2$: Completions: Lemma $3.2.2$