Characteristic Function of Gaussian Distribution
Jump to navigation
Jump to search
Theorem
The characteristic function of the Gaussian distribution with mean $\mu$ and variance $\sigma^2$ is
- $\map \phi t = e^{i t \mu - \frac 1 2 t^2 \sigma^2}$
Proof
Lemma 1
Let:
- $k = \mu + i t \sigma^2$
- $c = e^{\mu i t - \frac 1 2 t^2 \sigma^2}$
Then:
- $\map \phi t = c \dfrac 1 {\sqrt {2 \pi \sigma^2} } \ds \int_{x \mathop \in \R} e^{-\paren {\frac {x - k} {\sqrt 2 \sigma} }^2} \rd x$
$\Box$
Lemma 2
- $\ds \lim_{\alpha \mathop \to \infty} \int_{\frac{-\alpha - \mu} {\sqrt 2 \sigma} - i \frac {t \sigma} {\sqrt 2} }^{\frac {\alpha - \mu} {\sqrt 2 \sigma} - i \frac {t \sigma} {\sqrt 2} } e^{-z^2} \rd z = \sqrt {2 \pi \sigma^2}$
$\Box$
By Lemma 1:
- $\map \phi t = c \dfrac 1 {\sqrt {2 \pi \sigma^2} } \ds \int_{x \mathop \in \R} e^{-\paren {\frac {x - k} {\sqrt 2 \sigma} }^2} \rd x$
Let $z = \paren {\dfrac {x - k} {\sqrt 2 \sigma} }$.
Then:
\(\ds \map \phi t\) | \(=\) | \(\ds c \frac 1 {\sqrt {2 \pi \sigma^2} } \int_{\frac {-\alpha - \mu} {\sqrt 2 \sigma} - i \frac {t \sigma} {\sqrt 2} }^{\frac {\alpha - \mu} {\sqrt 2 \sigma} - i \frac {t \sigma} {\sqrt 2} } e^{-z^2} \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds c \frac 1 {\sqrt {2 \pi \sigma^2} } \sqrt {2 \pi \sigma^2}\) | Lemma 2 | |||||||||||
\(\ds \) | \(=\) | \(\ds c\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{\mu i t - \frac 1 2 t^2 \sigma^2}\) |
$\blacksquare$