# Characteristic Function of Square-Free Integers is Multiplicative

## Theorem

Let $S \subseteq \Z$ be the set of positive integers defined as:

$S := \set {n \in \Z: \forall k \in \Z_{>1}: k^2 \nmid n}$

That is, let $S$ be the set of all square-free positive integers.

Let $\chi_S: \N \to \Z$ denote the characteristic function of $S$:

$\forall n \in \Z: \map {\chi_S} n = \sqbrk {n \in S}$

where $\sqbrk {n \in S}$ is Iverson's convention.

Then $\chi_S$ is multiplicative.

## Proof

Let $r, s \in \Z$ such that $r \perp s$.

### Case 1: Either factor is not square-free

Let either $r \notin S$ or $s \notin S$ or both.

Then either:

$\exists k \in \Z_{>1}: k^2 \divides r$

or:

$\exists k \in \Z_{>1}: k^2 \divides s$

Thus either:

$\map {\chi_S} r = 0$

or:

$\map {\chi_S} s = 0$

and so:

$\map {\chi_S} r \, \map {\chi_S} s = 0$

But then:

$\exists k \in \Z_{>1}: k^2 \divides r s$

and so:

$\map {\chi_S} {r s} = 0$

demonstrating that:

$\map {\chi_S} r \, \map {\chi_S} s = \map {\chi_S} {r s}$

$\Box$

### Case 1: Both factors are square-free

Let $r \in S$ and $s \in S$.

Thus:

$\nexists k \in \Z_{>1}: k^2 \divides r$

and:

$\nexists k \in \Z_{>1}: k^2 \divides s$

Hence:

$\map {\chi_S} r = 1$

and:

$\map {\chi_S} s = 1$

and so:

$\map {\chi_S} r \, \map {\chi_S} s = 1$

Because $r \perp s$:

$\nexists k \in \Z_{>1}: k \divides r, k \divides s$

Hence there can be no $k \in \Z_{>1}$ whose multiplicity in $r s$ is greater than $1$.

Thus:

$\nexists k \in \Z_{>1}: k^2 \divides {r s}$

and so:

$\map {\chi_S} {r s} = 1$

once more demonstrating that:

$\map {\chi_S} r \, \map {\chi_S} s = \map {\chi_S} {r s}$

$\Box$

In both cases:

$\map {\chi_S} r \, \map {\chi_S} s = \map {\chi_S} {r s}$

Hence the result, by definition of multiplicative function.

$\blacksquare$