Characteristic of Cayley Table of Right Operation

From ProofWiki
Jump to navigation Jump to search


Let $S$ be a finite set.

Let $\rightarrow$ denote the right operation on $S$.

The Cayley table of the algebraic structure $\struct {S, \rightarrow}$ is characterised by the fact that each column contains just one distinct element.


A column of a Cayley table headed by $y$ contains all those elements of the form $x \rightarrow y$.

By definition of the right operation:

$x \rightarrow y = y$

Hence the result.


Also see