Characteristic of Quadratic Equation that Represents Two Straight Lines

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider the quadratic equation in $2$ variables:

$(1): \quad a x^2 + b y^2 + 2 h x y + 2 g x + 2 f y + c = 0$

where $x$ and $y$ are independent variables.


Then $(1)$ represents $2$ straight lines if and only if its discriminant equals zero:

$a b c + 2 f g h - a f^2 - b g^2 - c h^2 = 0$


This can also be expressed in the form of a determinant:

$\begin {vmatrix} a & h & g \\ h & b & f \\ g & f & c \end {vmatrix} = 0$


Proof

Suppose that $a \ne 0$.

We have:

\(\ds a x^2 + b y^2 + 2 h x y + 2 g x + 2 f y + c\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds a^2 x^2 + a b y^2 + 2 a h x y + 2 a g x + 2 a f y + c\) \(=\) \(\ds 0\) multiplying by $a$
\(\ds \leadsto \ \ \) \(\ds \paren {a x + h y + g}^2 + a b y^2 + 2 a f y + a c\) \(=\) \(\ds 2 g h y + h^2 y^2 + g^2\) completing the square in $x$ terms
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \paren {a x + h y + g}^2 - \paren {\paren {h^2 - a b} y^2 + 2 \paren {g h - a f} y + \paren {g^2 - a c} }\) \(=\) \(\ds 0\) rearranging


In order that the second part is a perfect square in $y$, it is necessary that:

\(\ds \paren {g h - a f}^2\) \(=\) \(\ds \paren {h^2 - a b} \paren {g^2 - a c}\)
\(\ds \leadsto \ \ \) \(\ds g^2 h^2 - 2 a f g h + a^2 f^2\) \(=\) \(\ds g^2 h^2 - a b g^2 - a c h^2 + a^2 b c\) multiplying out
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds a b c + 2 f g h - a f^2 - b g^2 - c h^2\) \(=\) \(\ds 0\) simplifying, rearranging and dividing by $a$ which is non-zero


Conversely, if $(3)$ is true, then $(2)$ can be expressed in the form of a Difference of Two Squares:

\(\text {(2)}: \quad\) \(\ds \paren {a x + h y + g}^2 - \paren {\paren {h^2 - a b} y^2 + 2 \paren {g h - a f} y + \paren {g^2 - a c} }\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {a x + h y + g}^2 - \paren {h^2 - a b} \paren {y^2 + 2 \dfrac {g h - a f} {h^2 - a b} y + \dfrac {g^2 - a c} {h^2 - a b} }\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {a x + h y + g}^2 - \paren {h^2 - a b} \paren {\paren {y + \dfrac {g h - a f} {h^2 - a b} }^2 + \dfrac {g^2 - a c} {h^2 - a b} - \paren {\dfrac {g h - a f} {h^2 - a b} }^2}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {a x + h y + g}^2 - \paren {h^2 - a b} \paren {y + \dfrac {g h - a f} {h^2 - a b} }^2\) \(=\) \(\ds 0\) as $\paren {g h - a f}^2 - \paren {h^2 - a b} \paren {g^2 - a c}$


Hence $(2)$ has $2$ factors, which can be seen to be the equations of straight lines.

$\Box$


Let $a = 0$ but $b \ne 0$.

Then:

\(\ds b y^2 + 2 h x y + 2 g x + 2 f y + c\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds b^2 y^2 + 2 b h x y + 2 b g x + 2 b f y + b c\) \(=\) \(\ds 0\) multiplying by $b$
\(\ds \leadsto \ \ \) \(\ds \paren {b y + h x + f}^2 + 2 b g x + b c\) \(=\) \(\ds 2 f h x + h^2 x^2 + f^2\) completing the square in $y$ terms
\(\ds \leadsto \ \ \) \(\ds \paren {b y + h x + f}^2 - \paren {h^2 x^2 + 2 \paren {f h - b g} x + \paren {f^2 - b c} }\) \(=\) \(\ds 0\) rearranging


In order that the second part is a perfect square in $x$, it is necessary that:

\(\ds \paren {f h - b g}^2\) \(=\) \(\ds h^2 \paren {f^2 - b c}\)
\(\ds \leadsto \ \ \) \(\ds f^2 h^2 - 2 b f g h + b^2 g^2\) \(=\) \(\ds f^2 h^2 - b c h^2\) multiplying out
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 2 f g h - b g^2 - c h^2\) \(=\) \(\ds 0\) simplifying, rearranging and dividing by $b$ which is non-zero

it is noted that $(4)$ is the same as $(3)$ but with $a = 0$.

$\Box$


Suppose $a = 0$ and $b = 0$ but $h \ne 0$.

Then:

\(\ds 2 h x y + 2 g x + 2 f y + c\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 2 h^2 x y + 2 g h x + 2 f h y + c h\) \(=\) \(\ds 0\) multiplying by $h$
\(\text {(5)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 2 \paren {h x + f} \paren {h y + g} + c h\) \(=\) \(\ds 2 f g\) extracting factors and completing rectangle

and it is seen that in order for $(1)$ to be divisible into the $2$ required factors:

$2 \paren {h x + f} \paren {h y + g} = 0$

it is necessary for $c h = 2 f g$.

This is again the same as $(3)$ when you set $a = 0$ and $b = 0$.

$\Box$


If $a = 0$ and $b = 0$ and $h = 0$, then $(1)$ is not a quadratic equation.

All cases have been covered.

$\Box$


Finally we see that:

\(\ds \begin {vmatrix} a & h & g \\ h & b & f \\ g & f & c \end {vmatrix}\) \(=\) \(\ds a \begin {vmatrix} b & f \\ f & c \end {vmatrix} - h \begin {vmatrix} h & f \\ g & c \end {vmatrix} + g \begin {vmatrix} h & b \\ g & f \end {vmatrix}\) Determinant of Order 3
\(\ds \) \(=\) \(\ds a \paren {b c - f^2} - h \paren {h c - f g} + g \paren {h f - b g}\) Determinant of Order 2
\(\ds \) \(=\) \(\ds a b c + 2 f g h - a f^2 - b g^2 - c h^2\) simplifying

$\blacksquare$


Sources