Characterization of Cosine Integral Function

From ProofWiki
Jump to: navigation, search

Definition

Let $\operatorname{Ci}$ denote the cosine integral function:

$\operatorname{Ci}: \left({0 \,. \,. \,\to}\right] \to \R$:
$\operatorname{Ci} \left({x}\right) = -\displaystyle \int_{t \mathop = x}^{t \mathop \to +\infty} \frac {\cos t} t \rd t$


Then:

$\operatorname{Ci}\left({x}\right) = \gamma + \ln x + \displaystyle \int_{t \mathop \to 0}^{t \mathop = x} \frac{\cos t - 1} t \rd t$

where $\gamma$ is the Euler-Macheroni constant.


Proof


Sources