Characterization of Null Sets of Variation of Complex Measure
Theorem
Let $\struct {X, \Sigma}$ be measurable space.
Let $\mu$ be a complex measure on $\struct {X, \Sigma}$.
Let $\size \mu$ be the variation of $\mu$.
Then $A \in \Sigma$ is such that $\map {\size \mu} A = 0$ if and only if:
- for each $\Sigma$-measurable set $B \subseteq A$, we have $\map \mu B = 0$.
Proof
Let $A \in \Sigma$.
Let $\map P A$ be the set of finite partitions of $A$ into $\Sigma$-measurable sets.
From the definition of variation, we have:
- $\ds \map {\cmod \mu} A = \sup \set {\sum_{j \mathop = 1}^n \cmod {\map \mu {A_j} } : \set {A_1, A_2, \ldots, A_n} \in \map P A}$
Suppose that:
- for each $\Sigma$-measurable set $B \subseteq A$, we have $\map \mu B = 0$.
Then, for any:
- $\set {A_1, A_2, \ldots, A_n} \in \map P A$
we have:
- $\map \mu {A_i} = 0$ for each $i$
so:
- $\ds \sum_{i \mathop = 1}^n \cmod {\map \mu {A_i} } = 0$
This gives:
- $\ds \set {\sum_{j \mathop = 1}^n \cmod {\map \mu {A_j} } : \set {A_1, A_2, \ldots, A_n} \in \map P A} = \set 0$
So, from the definition of supremum, we have:
- $\ds \sup \set {\sum_{j \mathop = 1}^n \cmod {\map \mu {A_j} } : \set {A_1, A_2, \ldots, A_n} \in \map P A} = 0$
so:
- $\map {\cmod \mu} A = 0$
$\Box$
Suppose that:
- $\map {\cmod \mu} A = 0$
Then:
- $\ds \sup \set {\sum_{j \mathop = 1}^n \cmod {\map \mu {A_j} } : \set {A_1, A_2, \ldots, A_n} \in \map P A} = 0$
Note that since each element of:
- $\ds \set {\sum_{j \mathop = 1}^n \cmod {\map \mu {A_j} } : \set {A_1, A_2, \ldots, A_n} \in \map P A}$
is non-negative, we must have:
- $\ds \set {\sum_{j \mathop = 1}^n \cmod {\map \mu {A_j} } : \set {A_1, A_2, \ldots, A_n} \in \map P A} = \set 0$
So, for all:
- $\set {A_1, A_2, \ldots, A_n} \in \map P A$
we have:
- $\ds \sum_{i \mathop = 1}^n \cmod {\map \mu {A_i} } = 0$
Let $B \subseteq A$ be $\Sigma$-measurable.
From Sigma-Algebra Closed under Set Difference, we have:
- $A \setminus B$ is $\Sigma$-measurable.
We also have:
- $A = B \cup \paren {A \setminus B}$
so:
- $\set {B, A \setminus B}$ is a finite partition of $A$ into $\Sigma$-measurable sets.
That is:
- $\set {B, A \setminus B} \in \map P A$
We therefore have:
- $\cmod {\map \mu B} + \cmod {\map \mu {A \setminus B} } = 0$
Since:
- $\cmod {\map \mu {A \setminus B} } \ge 0$
and:
- $\cmod {\map \mu B} \ge 0$
we must have:
- $\cmod {\map \mu B} = \cmod {\map \mu {A \setminus B} } = 0$
and in particular:
- $\map \mu B = 0$
So:
- for each $\Sigma$-measurable set $B \subseteq A$, we have $\map \mu B = 0$.
$\blacksquare$