Characterization of Polynomial has Root in P-adic Integers/Necessary Condition

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_p$ be the $p$-adic integers for some prime $p$.

Let $\map F X \in \Z_p \sqbrk X$ be a polynomial over $\Z_p$.

Let $a \in \Z_p$.

Let $\map F a = 0$.


Then:

there exists a sequence $\sequence {a_n}$ of integers:
$(1): \quad \ds \lim_{n \mathop \to \infty} {a_n} = a$
$(2): \quad \map F {a_n} \equiv 0 \mod {p^{n + 1} \Z_p}$

where $\map F {a_n} \equiv 0 \mod {p^{n + 1} \Z_p}$ denotes congruence modulo the ideal $p^{n + 1} \Z_p$


Proof

Let $\map F a = 0$.

Let $a = \ds \sum_{j \mathop = 0}^\infty d_j p^j$ be the $p$-adic expansion of $a$.

For all $n \in \N_{>0}$, let:

$a_n = \ds \sum_{j \mathop = 0}^{n - 1} d_j p^j$


By definition of $p$-adic expansion:

$\ds \lim_{n \mathop \to \infty} {a_n} = a$


By definition of $p$-adic expansion of a $p$-adic integer:

$\forall n \in \N_{>0} : a_n \in \Z$


We have:

\(\ds \forall n \in \N_{>0}: \, \) \(\ds a_n\) \(\equiv\) \(\ds a \pmod {p^n \Z_p}\) Partial Sum Congruent to P-adic Integer Modulo Power of p
\(\ds \leadsto \ \ \) \(\ds \forall n \in \N_{>0}: \, \) \(\ds \map F {a_n}\) \(\equiv\) \(\ds \map F a \pmod {p^n \Z_p}\) Polynomials of Congruent Ring Elements are Congruent
\(\ds \) \(\equiv\) \(\ds 0 \pmod {p^n\Z_p}\) as $\map F a = 0$
\(\ds \leadsto \ \ \) \(\ds \forall n \in \N_{>0}: \, \) \(\ds \map F {a_n}\) \(\equiv\) \(\ds 0 \pmod {p^n}\) Congruence Modulo Equivalence for Integers in P-adic Integers

$\blacksquare$