Chinese Remainder Theorem (Commutative Algebra)
Theorem
Let $A$ be a commutative ring.
Let $I_1, \ldots, I_k$ for some $k \ge 1$ be pairwise coprime ideals in $A$, that is:
- $\forall i \ne j: I_i + I_j = A$
Then there is an isomorphism of rings:
- $A / \left({I_1 \cap \ldots \cap I_k}\right) \to A / I_1 \times \cdots \times A / I_k$
which is induced by the ring homomorphism $\phi: A \to A / I_1 \times \cdots \times A / I_k$ defined as:
- $\phi \left({x}\right) = \left({x + I_1, \ldots, x + I_k}\right)$
which passes through the quotient.
Proof
The mapping $\phi$ is indeed a ring homomorphism, because each $A \to A / I_i$ is a ring homomorphism.
The kernel of $\phi$ is given by:
- $\displaystyle \ker \phi = \left\{{x \in A: \forall i, 1 \le i \le k : x \in I_i}\right\} = \bigcap_{1 \mathop \le i \mathop \le k} I_i$
So $\phi$ defines an injective homomorphism by passing through the quotient.
It remains then to prove that:
- $\tilde \phi \equiv \phi \circ \pi$
where $\pi$ is the canonical quotient-map, is surjective.
That is:
- $\forall x_i \in A, 1 \le i \le k: \exists x \in A: x - x_i \in I_i, 1 \le i \le k$
Then it follows that:
- $\displaystyle \left({x_1 + I_1, \ldots, x_k + I_k}\right) = \tilde \phi \left({x + \bigcap I_i}\right)$
Note that:
- $\left({x_1 + I_1, \ldots, x_k + I_k}\right) = \left({x_1 + I_1}\right) e_1 + \cdots + \left({x_k + I_k}\right) e_k$
where the unit element lies at the $i$-th component:
- $e_i = \left({0, \ldots, 0, 1_{A / I_i}, 0, \ldots, 0}\right)$
This implies that it is enough to find $a_i \in A, 1 \le i \le k$, such that:
- $\tilde \phi (a_i + \bigcap I_i) = e_i$
since:
\(\ds \tilde \phi \left({x_1 a_1 + \cdots + x_k a_k}\right)\) | \(=\) | \(\ds \tilde \phi \left({x_1}\right) \tilde \phi \left({a_1}\right) + \cdots + \tilde \phi \left({x_k}\right) \tilde \phi \left({a_k}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left({\tilde \phi \left({x_1}\right), \ldots, \tilde \phi \left({x_k}\right)}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left({x_1 + I_1, \ldots, x_n + I_n}\right)\) |
We show that $e_1$ is in the image of $\tilde \phi$.
The other instances of $e_i$ then follow in a similar manner.
We then need to find an $a \in A$ such that $a -1 \in I_1, a \in I_2, \ldots, a \in I_k$.
Since then $I_1$ is coprime with the other ideals, we have that $I_1 + I_j = A, 2 \le j \le k$.
So there exists a $b_j \in I_1$, $c_j \in I_j$ such that $b_j + c_j = 1$.
Note that this implies that $c_j - 1 \in I_1, c_j \in I_j$.
Define now $a = c_2 c_3 \cdots c_k \in A$.
Then for $2 \le j \le k$:
- $a = c_j \left({c_2 \cdots c_{j - 1} c_{j + 1} \cdots c_k}\right) \in I_j$
and:
\(\ds a + I_1\) | \(=\) | \(\ds \left({c_2 + I_1}\right) \cdots \left({c_k + I_1}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left({1 + I_1}\right) \cdots \left({1 + I_1}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + I_1\) |
Hence:
- $a - 1 \in I_1$
$\blacksquare$