Choice Function for Set implies Choice Function for Union of Set
Jump to navigation
Jump to search
Theorem
Let $S$ be a set of sets.
Let $\bigcup S$ denote the union of $S$.
Let there exists a choice function for $S$.
Then there exists a choice function for $\bigcup S$.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 2010: Raymond M. Smullyan and Melvin Fitting: Set Theory and the Continuum Problem (revised ed.) ... (previous) ... (next): Chapter $4$: Superinduction, Well Ordering and Choice: Part $\text I$ -- Superinduction and Well Ordering: $\S 4$ Well ordering and choice: Exercise $4.3$