Class Union Distributes over Class Intersection

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$, $B$ and $C$ be classes.

Then:

$A \cup \paren {B \cap C} = \paren {A \cup B} \cap \paren {A \cup C}$

where:

$A \cup B$ denotes class union
$B \cap C$ denotes class intersection.


Proof

\(\ds \) \(\) \(\ds x \in A \cup \paren {B \cap C}\)
\(\ds \) \(\leadstoandfrom\) \(\ds x \in A \lor \paren {x \in B \land x \in C}\) Definition of Class Union and Definition of Class Intersection
\(\ds \) \(\leadstoandfrom\) \(\ds \paren {x \in A \lor x \in B} \land \paren {x \in A \lor x \in C}\) Disjunction is Left Distributive over Conjunction
\(\ds \) \(\leadstoandfrom\) \(\ds x \in \paren {A \cup B} \cap \paren {A \cup C}\) Definition of Class Union and Definition of Class Intersection

$\blacksquare$


Also see


Sources