Kelvin-Stokes Theorem
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $S$ be some orientable smooth surface with boundary in $\R^3$.
Let $\mathbf F:\R^3 \to \R^3$ be a vector-valued function with Euclidean coordinate expression:
- $\mathbf F = f_1 \mathbf i + f_2 \mathbf j + f_3 \mathbf k$
where $f_i: \R^3 \to \R$.
Then:
- $\ds \oint_{\partial S} f_1 \rd x + f_2 \rd y + f_3 \rd z = \iint_S \paren {\nabla \times \mathbf F} \cdot \mathbf n \rd A$
where $\mathbf n$ is the unit normal to $S$ and $\d A$ is the area element on the surface.
![]() | This article is complete as far as it goes, but it could do with expansion. In particular: Also need to put this in the form $\ds \int_S \nabla \times \mathbf F \cdot \mathbf n \rd A = \int_C \mathbf F \cdot \d s$ You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding this information. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Expand}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Proof
Let $\mathbf r:\R^2 \to \R^3, \map {\mathbf r} {s, t}$ be a smooth parametrization of $S$ from some region $R$ in the $st$-plane, so that:
- $\map {\mathbf r} R = S$
and:
- $\map {\mathbf r} {\partial R} = \partial S$
First, we convert the left hand side into a line integral:
\(\ds \oint_{\partial S} f_1 \rd x + f_2 \rd y + f_3 \rd z\) | \(=\) | \(\ds \oint_{\partial S} \mathbf F \cdot \rd \mathbf r\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \oint_{\partial R} \mathbf F \cdot \frac {\partial \mathbf r} {\partial s} \rd s + \mathbf F \cdot \frac {\partial \mathbf r} {\partial t} \rd t\) |
so that if we define:
- $\mathbf G = \paren {G_1, G_2} = \paren {\mathbf F \cdot \dfrac {\partial \mathbf r} {\partial s}, \mathbf F \cdot \dfrac {\partial \mathbf r} {\partial t} }$
then:
- $\ds \int_{\partial S} \mathbf F \cdot \rd \mathbf r = \int_{\partial R} \mathbf G \cdot \rd \mathbf s$
where $\mathbf s$ is the position vector in the $s t$-plane.
Note that:
\(\ds \frac {\partial G_2} {\partial s}\) | \(=\) | \(\ds \mathbf F \cdot \map {\frac \partial {\partial s} } {\frac {\partial \mathbf r} {\partial t} } + \frac {\partial \mathbf r} {\partial t} \cdot \frac {\partial \mathbf F} {\partial s}\) | Derivative of Dot Product of Vector-Valued Functions | |||||||||||
\(\ds \frac {\partial G_1} {\partial t}\) | \(=\) | \(\ds \mathbf F \cdot \map {\frac \partial {\partial t} } {\frac {\partial \mathbf r} {\partial s} } + \frac {\partial \mathbf r} {\partial s} \cdot \frac {\partial \mathbf F} {\partial t}\) | Derivative of Dot Product of Vector-Valued Functions | |||||||||||
\(\ds \frac {\partial G_2} {\partial s} - \frac {\partial G_1} {\partial t}\) | \(=\) | \(\ds \mathbf F \cdot \map {\frac \partial {\partial s} } {\frac {\partial \mathbf r} {\partial t} } + \frac {\partial \mathbf r} {\partial t} \cdot \frac {\partial \mathbf F} {\partial s}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \mathbf F \cdot \map {\frac \partial {\partial t} } {\frac {\partial \mathbf r} {\partial s} } - \frac {\partial \mathbf r} {\partial s} \cdot \frac {\partial \mathbf F} {\partial t}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\partial \mathbf r} {\partial t} \cdot \frac {\partial \mathbf F} {\partial s} - \frac {\partial \mathbf r} {\partial s} \cdot \frac {\partial \mathbf F} {\partial t}\) | Symmetry of Second Derivatives |
We turn now to the expression on the right hand side and write it in terms of $s$ and $t$:
\(\ds \) | \(\) | \(\ds \iint_S \paren {\nabla \times \mathbf F} \cdot \mathbf n \rd A\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \iint_R \paren {\nabla \times \mathbf F \cdot \paren {\frac {\partial \mathbf r} {\partial s} \times \frac {\partial \mathbf r} {\partial t} } } \rd s \rd t\) |
Let us investigate the integrand:
\(\ds \) | \(\) | \(\ds \nabla \times \mathbf F \cdot \paren {\frac {\partial \mathbf r} {\partial s} \times \frac {\partial \mathbf r} {\partial t} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\dfrac {\partial f_3} {\partial y} - \dfrac {\partial f_2} {\partial z} } \mathbf i + \paren {\dfrac {\partial f_1} {\partial z} - \dfrac {\partial f_3} {\partial x} } \mathbf j + \paren {\dfrac {\partial f_2} {\partial x} - \dfrac {\partial f_1} {\partial y} } \mathbf k}\) | Definition of Curl Operator | |||||||||||
\(\ds \) | \(\) | \(\, \ds \cdot \, \) | \(\ds \paren {\paren {\dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} } \mathbf i + \paren {\dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} - \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} } \mathbf j + \paren {\dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} } \mathbf k}\) | Definition of Cross Product | ||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\dfrac {\partial f_3} {\partial y} - \dfrac {\partial f_2} {\partial z} } \paren {\dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\dfrac {\partial f_1} {\partial z} - \dfrac {\partial f_3} {\partial x} } \paren {\dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} - \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\dfrac {\partial f_2} {\partial x} - \dfrac {\partial f_1} {\partial y} } \paren {\dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} }\) | Definition of Dot Product | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial f_3} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial f_3} {\partial y} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_2} {\partial z} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_2} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_1} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} - \dfrac {\partial f_1} {\partial z} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial f_3} {\partial x} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_3} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_2} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_2} {\partial x} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} - \dfrac {\partial f_1} {\partial y} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_1} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial f_1} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} - \dfrac {\partial f_1} {\partial z} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial f_1} {\partial y} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_1} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \dfrac {\partial f_2} {\partial z} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_2} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_2} {\partial x} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_3} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial f_3} {\partial y} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_3} {\partial x} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_3} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t}\) | grouping the terms that reference like components of $\mathbf F$ together | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial f_1} {\partial z} \dfrac {\partial z} {\partial s} \dfrac{\partial x}{\partial t} - \dfrac {\partial f_1} {\partial z} \dfrac {\partial x} {\partial s} \dfrac{\partial z}{\partial t} - \dfrac {\partial f_1} {\partial y} \dfrac {\partial x} {\partial s} \dfrac{\partial y}{\partial t} + \dfrac {\partial f_1} {\partial y} \dfrac {\partial y} {\partial s} \dfrac{\partial x}{\partial t}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\dfrac {\partial f_1} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial x} {\partial t} - \dfrac {\partial f_1} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial x} {\partial t} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \dfrac {\partial f_2} {\partial z} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_2} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_2} {\partial x} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\dfrac {\partial f_2} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_2} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial y} {\partial t} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_3} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial f_3} {\partial y} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_3} {\partial x} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_3} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\dfrac {\partial f_3} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial f_3} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial z} {\partial t} }\) | introducing terms that themselves sum to zero,
in order to complete the parts of the derivatives of $\mathbf F$ in a later step |
||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial f_1} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_1} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_1} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial x} {\partial t}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {- \dfrac {\partial f_1} {\partial z} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial f_1} {\partial y} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_1} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial x} {\partial t} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_2} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial y} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {- \dfrac {\partial f_2} {\partial z} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} - \dfrac {\partial f_2} {\partial x} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} - \dfrac {\partial f_2} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial y} {\partial t} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_3} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_3} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_3} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial z} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {- \dfrac {\partial f_3} {\partial y} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} - \dfrac {\partial f_3} {\partial x} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} - \dfrac {\partial f_3} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial z} {\partial t} }\) | grouping terms by sign,
but keeping terms that reference like components of $\mathbf F$ together |
||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial f_1} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_1} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_1} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial x} {\partial t}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_2} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial y} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_3} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_3} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_3} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial z} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \leftparen {\dfrac {\partial f_1} {\partial z} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_1} {\partial y} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_1} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial x} {\partial t} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_2} {\partial z} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_2} {\partial x} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_2} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial y} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \rightparen {\dfrac {\partial f_3} {\partial y} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_3} {\partial x} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_3} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial z} {\partial t} }\) | grouping all negative terms together and factoring out the negative sign | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial f_1} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_1} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_1} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_2} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_3} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_3} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t} + \dfrac {\partial f_3} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial z} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \leftparen {\dfrac {\partial f_1} {\partial x} \dfrac {\partial x} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_1} {\partial y} \dfrac {\partial x} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_1} {\partial z} \dfrac {\partial x} {\partial s} \dfrac {\partial z} {\partial t} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac {\partial f_2} {\partial x} \dfrac {\partial y} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_2} {\partial y} \dfrac {\partial y} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_2} {\partial z} \dfrac {\partial y} {\partial s} \dfrac {\partial z} {\partial t}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \rightparen {\dfrac {\partial f_3} {\partial x} \dfrac {\partial z} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_3} {\partial y} \dfrac {\partial z} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_3} {\partial z} \dfrac {\partial z} {\partial s} \dfrac {\partial z} {\partial t} }\) | rearranging into groups,
in order to clarify use of the Chain Rule for Real-Valued Functions in the next step |
||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\dfrac {\partial f_1} {\partial s} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_2} {\partial s} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_3} {\partial s} \dfrac {\partial z} {\partial t} }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \paren {\dfrac {\partial f_1} {\partial t} \dfrac {\partial x} {\partial t} + \dfrac {\partial f_2} {\partial t} \dfrac {\partial y} {\partial t} + \dfrac {\partial f_3} {\partial t} \dfrac {\partial z} {\partial t} }\) | Chain Rule for Real-Valued Functions | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial \mathbf F} {\partial s} \cdot \dfrac {\partial \mathbf r} {\partial t} - \dfrac {\partial \mathbf F} {\partial t} \cdot \dfrac {\partial \mathbf r} {\partial s}\) | Definition:Dot Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\partial G_2} {\partial s} - \frac {\partial G_1} {\partial t}\) |
That is:
- $\ds \iint_S \paren {\nabla \times \mathbf F} \cdot \mathbf n \rd A = \iint_R \paren {\frac {\partial G_2} {\partial s} - \frac {\partial G_1} {\partial t} } \rd s \rd t$
By Green's Theorem, this can be written as:
- $\ds \int_{\partial R} \mathbf G \cdot \rd \mathbf s$
Hence both sides of the theorem equation are equal.
$\blacksquare$
Also known as
Also known as the Classical Stokes' Theorem.
Source of Name
This entry was named for Lord Kelvin and George Gabriel Stokes.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 22$: Integrals involving Vectors: $22.60$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Stokes's theorem (G.G. Stokes, 1854)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Stokes's theorem (G.G. Stokes, 1854)
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Stokes's Theorem