Closure of Subset contains Loop

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \struct {S, \mathscr I}$ be a matroid.

Let $x$ be a loop of $M$.

Let $A \subseteq S$.


Then:

$x \in \map \sigma A$

where $\map \sigma A$ denotes the closure of $A$.


Proof

By definition of the closure of $A$:

$x \in \map \sigma A$ if and only if $x \sim A$

where $\sim$ is the depends relation on $M$.

By definition of the depends relation:

$x \sim A$ if and only if $\map \rho {A \cup \set x} = \map \rho A$

where $\rho$ is the rank function on $M$.

So it remains to show that:

$\map \rho {A \cup \set x} = \map \rho A$


By definition of the rank function:

$\map \rho {A \cup \set x} = \max \set {\size X : X \subseteq A \cup \set x \land X \in \mathscr I}$

From Max Operation Equals an Operand:

$\exists X \in \mathscr I : X \subseteq A \cup \set x \land \size X = \map \rho {A \cup \set x}$


From the contrapositive statement of Set is Dependent if Contains Loop:

$x \notin X$

Now:

\(\ds X\) \(=\) \(\ds \paren{A \cup \set x} \cap X\) Intersection with Subset is Subset
\(\ds \) \(=\) \(\ds \paren{A \cap X} \cup \paren {\set x \cap X}\) Intersection Distributes over Union
\(\ds \) \(=\) \(\ds \paren{A \cap X} \cup \O\) Intersection With Singleton is Disjoint if Not Element
\(\ds \) \(=\) \(\ds \paren{A \cap X}\) Union with Empty Set
\(\ds \leadsto \ \ \) \(\ds X\) \(\subseteq\) \(\ds A\) Intersection with Subset is Subset

From Max Operation Yields Supremum of Operands:

$\size X \le \max \set {\size Y : Y \subseteq A \land Y \in \mathscr I} = \map \rho A$

From Rank Function is Increasing:

$\map \rho A \le \map \rho {A \cup \set x} = \size X$

Thus:

$\map \rho A = \size X = \map \rho {A \cup \set x}$

$\blacksquare$


Sources