Codomain of Composite Relation
Jump to navigation
Jump to search
Theorem
Let $\RR_2 \circ \RR_1$ be a composite relation.
Then the codomain of $\RR_2 \circ \RR_1$ is the codomain of $\RR_2$:
- $\Cdm {\RR_2 \circ \RR_1} = \Cdm {\RR_2}$
Proof
Let $\RR_1 \subseteq S_1 \times S_2$ and $\RR_2 \subseteq S_2 \times S_3$.
The codomain of $\RR_2$ is $S_3$.
The composite of $\RR_1$ and $\RR_2$ is defined as:
- $\RR_2 \circ \RR_1 = \set {\tuple {x, z}: x \in S_1, z \in S_3: \exists y \in S_2: \tuple {x, y} \in \RR_1 \land \tuple {y, z} \in \RR_2}$
From this definition:
- $\RR_2 \circ \RR_1 \subseteq S_1 \times S_3$
Thus the codomain of $\RR_2 \circ \RR_1$ is $S_3$.
Thus:
- $\Cdm {\RR_2 \circ \RR_1} = S_3 = \Cdm {\RR_2}$
$\blacksquare$