Combination Theorem for Complex Derivatives/Sum Rule/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\paren {f + g}'} z = \map {f'} z + \map {g'} z$


Proof

Let $z_0 \in D$ be a point in $D$.

Define $k : D \to \Z$ by $\map k {z_0} = \map f {z_0} + \map g {z_0}$.

Then:

\(\ds \map { k' } {z_0}\) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {\map k {z_0 + h} - \map k {z_0} } h\) Definition of Derivative of Complex Function
\(\ds \) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {\paren {\map f {z_0 + h} + \map g {z_0 + h} } - \paren {\map f {z_0} +\map g {z_0} } } h\)
\(\ds \) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {\map f {z_0 + h} + \map g {z_0 + h} - \map f {z_0} - \map g {z_0} } h\)
\(\ds \) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {\paren {\map f {z_0 + h} - \map f {z_0} } + \paren {\map g {z_0 + h} - \map g {z_0} } } h\)
\(\ds \) \(=\) \(\ds \lim_{h \mathop \to 0} \paren {\frac {\map f {z_0 + h} - \map f {z_0} } h + \frac {\map g {z_0 + h} - \map g {z_0} } h}\) Complex Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {\map f {z_0 + h} - \map f {z_0} } h + \lim_{h \mathop \to 0} \frac {\map g {z_0 + h} - \map g {z_0} } h\) Sum Rule for Limits of Complex Functions
\(\ds \) \(=\) \(\ds \map {f'} {z_0} + \map {g'} {z_0}\) Definition of Derivative of Complex Function
\(\ds \leadsto \ \ \) \(\ds \forall z \in D: \, \) \(\ds \map { \paren{f+g}' } z\) \(=\) \(\ds \map {f'} z + \map {g'} z\) Definition of Derivative of Complex Function

$\blacksquare$