Combination Theorem for Limits of Functions/Sum Rule

From ProofWiki
Jump to: navigation, search

Theorem

Let $X$ be one of the standard number fields $\Q, \R, \C$.

Let $f$ and $g$ be functions defined on an open subset $S \subseteq X$, except possibly at the point $c \in S$.

Let $f$ and $g$ tend to the following limits:

$\displaystyle \lim_{x \to c} \ f \left({x}\right) = l$
$\displaystyle \lim_{x \to c} \ g \left({x}\right) = m$


Then:

$\displaystyle \lim_{x \to c} \ \left({f \left({x}\right) + g \left({x}\right)}\right) = l + m$


Proof

Let $\left \langle {x_n} \right \rangle$ be any sequence of points of $S$ such that:

$\forall n \in \N^*: x_n \ne c$
$\displaystyle \lim_{n \to \infty} \ x_n = c$


By Limit of Function by Convergent Sequences, we have:

$\displaystyle \lim_{n \to \infty} \ f \left({x_n}\right) = l$
$\displaystyle \lim_{n \to \infty} \ g \left({x_n}\right) = m$


By the Sum Rule for Sequences:

$\displaystyle \lim_{n \to \infty} \ \left({f \left({x_n}\right) + g \left({x_n}\right)}\right) = l + m$


Applying Limit of Function by Convergent Sequences again, we get:

$\displaystyle \lim_{x \to c} \ \left({f \left({x}\right) + g \left({x}\right)}\right) = l + m$

$\blacksquare$

Sources