Combination Theorem for Sequences/Real/Difference Rule

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {x_n}$ and $\sequence {y_n}$ be sequences in $\R$.

Let $\sequence {x_n}$ and $\sequence {y_n}$ be convergent to the following limits:

$\displaystyle \lim_{n \mathop \to \infty} x_n = l$
$\displaystyle \lim_{n \mathop \to \infty} y_n = m$


Then:

$\displaystyle \lim_{n \mathop \to \infty} \paren {x_n - y_n} = l - m$


Proof

From Sum Rule for Real Sequences:

$\displaystyle \lim_{n \mathop \to \infty} \paren {x_n + y_n} = l + m$

From Multiple Rule for Real Sequences:

$\displaystyle \lim_{n \mathop \to \infty} \paren {-y_n} = -m$

Hence:

$\displaystyle \lim_{n \mathop \to \infty} \paren {x_n + \paren {-y_n} } = l + \paren {-m}$

The result follows.

$\blacksquare$


Also see