Common Divisor Divides Integer Combination/Proof 2
Jump to navigation
Jump to search
Theorem
Let $c$ be a common divisor of two integers $a$ and $b$.
That is:
- $a, b, c \in \Z: c \divides a \land c \divides b$
Then $c$ divides any integer combination of $a$ and $b$:
- $\forall p, q \in \Z: c \divides \paren {p a + q b}$
Proof
\(\ds c\) | \(\divides\) | \(\ds a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists x \in \Z: \, \) | \(\ds a\) | \(=\) | \(\ds x c\) | Definition of Divisor of Integer | |||||||||
\(\ds c\) | \(\divides\) | \(\ds b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists y \in \Z: \, \) | \(\ds b\) | \(=\) | \(\ds y c\) | Definition of Divisor of Integer | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall p, q \in \Z: \, \) | \(\ds p a + q b\) | \(=\) | \(\ds p x c + q y c\) | Substitution for $a$ and $b$ | |||||||||
\(\ds \) | \(=\) | \(\ds \paren {p x + q y} c\) | Integer Multiplication Distributes over Addition | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists z \in \Z: \, \) | \(\ds p a + q b\) | \(=\) | \(\ds z c\) | where $z = p x + q y$ | |||||||||
\(\ds \leadsto \ \ \) | \(\ds c\) | \(\divides\) | \(\ds \paren {p a + q b}\) | Definition of Divisor of Integer |
$\blacksquare$
Sources
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $3$: The Integers: $\S 10$. Divisibility: Theorem $16 \ \text{(iii)}$
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {2-2}$ Divisibility: Example $\text {2-4}$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 11.4$: The division algorithm