Common Factor Cancelling in Congruence

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b, x, y, m \in \Z$.

Let:

$a x \equiv b y \pmod m$ and $a \equiv b \pmod m$

where $a \equiv b \pmod m$ denotes that $a$ is congruent modulo $m$ to $b$.


Then:

$x \equiv y \pmod {m / d}$

where $d = \gcd \set {a, m}$.


Corollary 1

If $a$ is coprime to $m$, then:

$x \equiv y \pmod m$


Corollary 2

Let:

$a x \equiv a y \pmod m$

where $a \equiv b \pmod m$ denotes that $a$ is congruent modulo $m$ to $b$.


If $a$ is coprime to $m$, then:

$x \equiv y \pmod m$


Proof

We have that $d = \gcd \set {a, m}$.

From Law of Inverses (Modulo Arithmetic), we have:

$\exists a' \in \Z: a a' \equiv d \pmod m$


Hence:

\(\ds a\) \(\equiv\) \(\ds b\) \(\ds \pmod m\)
\(\ds \leadsto \ \ \) \(\ds a a'\) \(\equiv\) \(\ds b a'\) \(\ds \pmod m\) Definition of Modulo Multiplication
\(\ds \) \(\equiv\) \(\ds d\) \(\ds \pmod m\)


Then:

\(\ds a x\) \(\equiv\) \(\ds b y\) \(\ds \pmod m\)
\(\ds \leadsto \ \ \) \(\ds a a' x\) \(\equiv\) \(\ds b a' y\) \(\ds \pmod m\) Definition of Modulo Multiplication
\(\ds \leadsto \ \ \) \(\ds d x\) \(\equiv\) \(\ds d y\) \(\ds \pmod m\) from above
\(\ds \leadsto \ \ \) \(\ds x\) \(\equiv\) \(\ds y\) \(\ds \paren {\bmod {\dfrac m d} }\) Congruence by Product of Moduli

Hence the result.

$\blacksquare$


Examples

Congruence Cancelling: $6 \equiv 12 \pmod 2 \leadsto 2 \equiv 4 \pmod 2$

We have that:

$6 \equiv 12 \pmod 2$

and so:

$2 \equiv 4 \pmod 2$