Commutative B-Algebra Implies (zy)(zx)=xy

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {B, \circ}$ be a commutative $B$-algebra.


Then:

$\forall x, y, z \in X: \paren {z \circ y} \circ \paren {z \circ x} = x \circ y$


Proof

Let $x, y, z \in X$.

Then:

\(\ds \paren {z \circ y} \circ \paren {z \circ x}\) \(=\) \(\ds \paren {\paren {z \circ y} \circ \paren {0 \circ x} } \circ z\) Identity: $x \circ \paren {y \circ z} = \paren {x \circ \paren {0 \circ z} } \circ y$
\(\ds \) \(=\) \(\ds \paren {x \circ \paren {0 \circ \paren {z \circ y} } } \circ z\) Definition of Commutative $B$-Algebra
\(\ds \) \(=\) \(\ds x \circ \paren {z \circ \paren {0 \circ \paren {0 \circ \paren {z \circ y} } } }\) $B$-Algebra Axiom $(\text A 3)$
\(\ds \) \(=\) \(\ds x \circ \paren {z \circ \paren {z \circ y} }\) Identity: $x \circ y = x \circ \paren {0 \circ \paren {0 \circ y} }$
\(\ds \) \(=\) \(\ds x \circ y\) $B$-Algebra is Commutative iff $x \circ \paren {x \circ y} = y$

$\blacksquare$