Commutator on Algebra is Alternating Bilinear Mapping

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {A_R, \oplus}$ be an algebra over a ring.


Then the commutator on $\struct {A_R, \oplus}$ is an alternating bilinear mapping:

$\forall a, b \in A_R: \sqbrk {a, b} = -\sqbrk {b, a}$


Proof

\(\ds \sqbrk {a, b}\) \(=\) \(\ds a \oplus b - b \oplus a\)
\(\ds \) \(=\) \(\ds -b \oplus a + a \oplus b\)
\(\ds \) \(=\) \(\ds -b \oplus a - \paren {-\paren {a \oplus b} }\)
\(\ds \) \(=\) \(\ds -\paren {b \oplus a - a \oplus b}\)
\(\ds \) \(=\) \(\ds -\sqbrk {b, a}\)

$\blacksquare$


Sources