Compass and Straightedge Construction for Regular Heptagon does not exist

From ProofWiki
Jump to navigation Jump to search

Theorem

There exists no compass and straightedge construction for the regular heptagon.


Proof 1

By definition, the regular heptagon has $7$ sides.

$7$ is a prime number which is not a fermat prime.

The result follows Construction of Regular Prime $p$-Gon Exists iff $p$ is Fermat Prime.

$\blacksquare$


Proof 2

Construction of a regular heptagon is the equivalent of constructing the point $\tuple {\cos \dfrac {2 \pi} 7, \sin \dfrac {2 \pi} 7}$ from the points $\tuple {0, 0}$ and $\tuple {1, 0}$

Let $\epsilon = \map \exp {\dfrac {2 \pi} 7}$.

Then $\epsilon$ is a root of $x^7 - 1$.

We have:

\(\ds x^7 - 1\) \(=\) \(\ds \paren {x - 1} \paren {x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}\)
\(\ds \leadsto \ \ \) \(\ds \epsilon^6 + \epsilon^5 + \epsilon^4 + \epsilon^3 + \epsilon^2 + \epsilon + 1\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \epsilon^3 + \epsilon^2 + \epsilon + 1 + \epsilon^{-1} + \epsilon^{-2} + \epsilon^{-3}\) \(=\) \(\ds 0\)

But we have:

\(\ds \epsilon\) \(=\) \(\ds \cos \dfrac {2 \pi} 7 + i \sin \dfrac {2 \pi} 7\)
\(\ds \epsilon^{-1}\) \(=\) \(\ds \cos \dfrac {2 \pi} 7 - i \sin \dfrac {2 \pi} 7\)
\(\ds \leadsto \ \ \) \(\ds \epsilon + \epsilon^{-1}\) \(=\) \(\ds 2 c\) where $c = \cos \dfrac {2 \pi} 7$
\(\ds \leadsto \ \ \) \(\ds \epsilon^2 + \epsilon^{-2} + 2\) \(=\) \(\ds 4 c^2\) squaring
\(\ds \leadsto \ \ \) \(\ds \epsilon^3 + \epsilon^{-3} + 3 \paren {\epsilon + \epsilon^{-1} }\) \(=\) \(\ds 8 c^3\) cubing
\(\ds \leadsto \ \ \) \(\ds \epsilon^2 + \epsilon^{-2}\) \(=\) \(\ds 4 c^2 - 2\)
\(\ds \leadsto \ \ \) \(\ds \epsilon^3 + \epsilon^{-3}\) \(=\) \(\ds 8 c^3 - 6 c\)
\(\ds \leadsto \ \ \) \(\ds \paren {8 c^3 - 6 c} + \paren {4 c^2 - 2} + 2 c - 1\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 8 c^3 + 4 c^2 - 4 c - 1\) \(=\) \(\ds 0\)

Thus $2 c$ is a root of the polynomial $x^3 + x^2 - 2 x - 1$

But from Irreducible Polynomial: $x^3 + x^2 - 2 x - 1$ in Rationals:

$x^3 + x^2 - 2 x - 1$ is irreducible over $\Q$.


Thus by Algebraic Element of Degree 3 is not Element of Field Extension of Degree Power of 2, $\cos \dfrac {2 \pi} 7$ is not an element of any extension of $\Q$ of degree $2^m$.

The result follows from Point in Plane is Constructible iff Coordinates in Extension of Degree Power of 2.

$\blacksquare$