Complement of Closed Interval Defined by Absolute Value

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\xi, \delta \in \R$ be real numbers.

Let $\delta > 0$.


Then:

$\set {x \in \R: \size {\xi - x} > \delta} = \R \setminus \closedint {\xi - \delta} {\xi + \delta}$

where:

$\closedint {\xi - \delta} {\xi + \delta}$ is the closed real interval between $\xi - \delta$ and $\xi + \delta$
$\setminus$ denotes the set difference operator.


Proof

\(\ds y\) \(\in\) \(\ds \set {x \in \R: \size {\xi - x} > \delta}\)
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(\notin\) \(\ds \set {x \in \R: \size {\xi - x} \le \delta}\)
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(\notin\) \(\ds \closedint {\xi - \delta} {\xi + \delta}\) Closed Interval Defined by Absolute Value
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(\in\) \(\ds \R \setminus \closedint {\xi - \delta} {\xi + \delta}\) Definition of Set Difference

$\blacksquare$


Also presented as

$\set {x \in \R: \size {x - \xi} \ge \delta} = \R \setminus \closedint {\xi - \delta} {\xi + \delta}$

which is immediate from:

$\size {x - \xi} = \size {\xi - x}$


Also see