Complement of F-Sigma Set is G-Delta Set

From ProofWiki
Jump to: navigation, search

Theorem

Let $T = \left({S, \tau}\right)$ be a topological space.

Let $X$ be an $F_\sigma$ set of $T$.


Then its complement $S \setminus X$ is a $G_\delta$ set of $S$.


Proof

Let $X$ be an $F_\sigma$ set of $T$.

Then $X = \displaystyle \bigcup \mathcal V$ where $\mathcal V$ is a countable union of closed sets in $T$.

Then from De Morgan's Laws: Difference with Union we have:

$\displaystyle S \setminus X = S \setminus \bigcup \mathcal V = \bigcap_{V \mathop \in \mathcal V} \left({S \setminus V}\right)$

By definition of closed set, each of the $S \setminus V$ are open sets.

So $\displaystyle \bigcap_{V \mathop \in \mathcal V} \left({S \setminus V}\right)$ is a countable intersection of open sets in $T$.

Hence $S \setminus X$ is, by definition, a $G_\delta$ set of $T$.

$\blacksquare$


Also see


Sources