Complements of Components of Two-Component Partition form Partition

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set with at least two elements.

Let $A, B \subseteq S$.

Let $\complement_S$ denote the complement relative to $S$.


$A \mid B$ is a partition of $S$ if and only if $\relcomp S A \mid \relcomp S B$ is a partition of $S$.


Proof

Necessary Condition

Let $A \mid B$ be a partition of $S$.

That is, by definition:

$(1): \quad A \cap B = \O$
$(2): \quad A \cup B = S$
$(3): \quad A, B \ne \O$


Thus:

\(\ds A \cap B\) \(=\) \(\ds \O\)
\(\ds \leadsto \ \ \) \(\ds \relcomp S {A \cap B}\) \(=\) \(\ds S\) Relative Complement of Empty Set
\(\ds \leadsto \ \ \) \(\ds \relcomp S A \cup \relcomp S B\) \(=\) \(\ds S\) De Morgan's Laws: Complement of Intersection


\(\ds A \cup B\) \(=\) \(\ds S\)
\(\ds \leadsto \ \ \) \(\ds \relcomp S {A \cup B}\) \(=\) \(\ds \O\) Relative Complement with Self is Empty Set
\(\ds \leadsto \ \ \) \(\ds \relcomp S A \cap \relcomp S B\) \(=\) \(\ds \O\) De Morgan's Laws: Complement of Union


Without loss of generality, now suppose that $\relcomp S A = \O$.

\(\ds \relcomp S A\) \(=\) \(\ds \O\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds S\) Relative Complement of Empty Set
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \O\) as $A \cap B = \O$

Thus by Rule of Transposition:

$B \ne \O \implies \relcomp S A \ne \O$

Mutatis mutandis:

$A \ne \O \implies \relcomp S B \ne \O$


by hypothesis:

$A, B \ne \O$

and so:

$\relcomp S A, \relcomp S B \ne \O$


Thus all three conditions are satisfied for $\relcomp S A \mid \relcomp S B$ to be a partition of $S$.

$\Box$


Sufficient Condition

Let $\relcomp S A \mid \relcomp S B$ be a partition of $S$.

By the necessary condition, it follows that $\relcomp S {\relcomp S A} \mid \relcomp S {\relcomp S B}$ is a partition of $S$.

From Relative Complement of Relative Complement:

$\relcomp S {\relcomp S A} = A$ and $\relcomp S {\relcomp S B} = B$

and so $A \mid B$ is a partition of $S$.

$\blacksquare$