Complete Residue System/Examples/Modulo 11/Odd Integers

From ProofWiki
Jump to navigation Jump to search

Examples of Complete Residue Systems

The set of integers:

$\set {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}$

forms a complete residue system modulo $11$.


Proof

We have:

\(\ds 11\) \(=\) \(\ds 1 \times 11 + 0\)
\(\ds \) \(\equiv\) \(\ds 0\) \(\ds \pmod {11}\)
\(\ds 13\) \(=\) \(\ds 1 \times 11 + 2\)
\(\ds \) \(\equiv\) \(\ds 2\) \(\ds \pmod {11}\)
\(\ds 15\) \(=\) \(\ds 1 \times 11 + 4\)
\(\ds \) \(\equiv\) \(\ds 4\) \(\ds \pmod {11}\)
\(\ds 17\) \(=\) \(\ds 1 \times 11 + 6\)
\(\ds \) \(\equiv\) \(\ds 6\) \(\ds \pmod {11}\)
\(\ds 19\) \(=\) \(\ds 1 \times 11 + 8\)
\(\ds \) \(\equiv\) \(\ds 8\) \(\ds \pmod {11}\)
\(\ds 21\) \(=\) \(\ds 1 \times 11 + 101\)
\(\ds \) \(\equiv\) \(\ds 10\) \(\ds \pmod {11}\)

Thus we see that:

$\set {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}$

is equivalent to:

$\set {1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10}$

The result follows from Initial Segment of Natural Numbers forms Complete Residue System.

$\blacksquare$


Sources