# Vector Cross Product is Anticommutative/Complex

## Theorem

$\forall z_1, z_2 \in \C: z_1 \times z_2 = -\paren {z_2 \times z_1}$

## Proof

Let:

$z_1 := x_1 + i y_1, z_2 = x_2 + i y_2$

Then:

 $\ds z_1 \times z_2$ $=$ $\ds x_1 y_2 - y_1 x_2$ Definition 1 of Complex Cross Product $\ds$ $=$ $\ds -\left({x_2 y_1 - y_2 x_1}\right)$ Real Addition is Commutative and Real Multiplication is Commutative $\ds$ $=$ $\ds -\left({z_2 \times z_1}\right)$ Definition 1 of Complex Cross Product

$\blacksquare$

## Examples

### Example: $\paren {2 + 5 i} \times \paren {3 - i} = -\paren {\paren {3 - i} \times \paren {2 + 5 i} }$

#### Example: $\paren {2 + 5 i} \times \paren {3 - i}$

Let:

$z_1 = 2 + 5 i$
$z_2 = 3 - i$

Then:

$z_1 \times z_2 = -17$

where $\times$ denotes (complex) cross product.

#### Example: $\paren {3 - i} \times \paren {2 + 5 i}$

Let:

$z_1 = 3 - i$
$z_2 = 2 + 5 i$

Then:

$z_1 \times z_2 = 17$

where $\times$ denotes (complex) cross product.

As can be seen:

$\paren {2 + 5 i} \times \paren {3 - i} = -\paren {\paren {3 - i} \times \paren {2 + 5 i} }$

$\blacksquare$