Complex Dot Product/Examples/2+5i dot 3-i
Jump to navigation
Jump to search
Example of Complex Dot Product
Let:
- $z_1 = 2 + 5 i$
- $z_2 = 3 - i$
Then:
- $z_1 \circ z_2 = 1$
where $\circ$ denotes (complex) dot product.
Proof
\(\ds z_1 \circ z_2\) | \(=\) | \(\ds \paren {2 + 5 i} \circ \paren {3 - i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \times 3 + 5 \times \paren {-1}\) | Definition 1 of Dot Product | |||||||||||
\(\ds \) | \(=\) | \(\ds 6 - 5\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: The Dot and Cross Product: $110 \ \text {(a)}$