Complex Modulus of Additive Inverse
Jump to navigation
Jump to search
Theorem
Let $z \in \C$ be a complex number.
Let $-z$ be the negative of $z$:
- $z + \paren {-z} = 0$
Then:
- $\cmod z = \cmod {\paren {-z} }$
where $\cmod z$ denotes the modulus of $z$.
Proof
Let $z = a + i b$.
\(\ds \cmod {\paren {-z} }\) | \(=\) | \(\ds \cmod {\paren {-a - i b} }\) | Definition of Negative of Complex Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\paren {-a}^2 + \paren {-b}^2}\) | Definition of Complex Modulus | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {a^2 + b^2}\) | Even Power of Negative Real Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {a + i b}\) | Definition of Complex Modulus | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z\) | Definition of $z$ |
$\blacksquare$