Complex Modulus of Quotient of Complex Numbers
Jump to navigation
Jump to search
Theorem
Let $z_1, z_2 \in \C$ be complex numbers such that $z_2 \ne 0$.
Let $\cmod z$ denote the modulus of $z$.
Then:
- $\cmod {\dfrac {z_1} {z_2} } = \dfrac {\cmod {z_1} } {\cmod {z_2} }$
Proof
\(\ds \cmod {\dfrac {z_1} {z_2} }\) | \(=\) | \(\ds \cmod {z_1 \times z_2^{-1} }\) | Definition of Complex Division | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {z_1} \times \cmod {z_2^{-1} }\) | Complex Modulus of Product of Complex Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {z_1} \times \cmod {z_2}^{-1}\) | Complex Modulus of Reciprocal of Complex Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\cmod {z_1} } {\cmod {z_2} }\) | Definition of Real Division |
$\blacksquare$
Examples
Complex Modulus of $\dfrac {\paren {1 + 2 i}^{12} } {\paren {1 - 2 i}^9}$
- $\cmod {\dfrac {\paren {1 + 2 i}^{12} } {\paren {1 - 2 i}^9} } = 5 \sqrt 5$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1$. Algebraic Theory of Complex Numbers: Exercise $5$
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 2$. Geometrical Representations
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.7$ Complex Numbers and Functions: Multiplication and Division: $3.7.14$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Absolute Value: $2$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Fundamental Operations with Complex Numbers: $56 \ \text{(b)}$