Complex Number equals Negative of Conjugate iff Wholly Imaginary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Let $\overline z$ be the complex conjugate of $z$.


Then $\overline z = -z$ if and only if $z$ is wholly imaginary.


Proof

Let $z = x + i y$.


Then:

\(\ds \overline z\) \(=\) \(\ds -z\)
\(\ds \leadsto \ \ \) \(\ds x - i y\) \(=\) \(\ds -\left({x + i y}\right)\) Definition of Complex Conjugate
\(\ds \leadsto \ \ \) \(\ds +x\) \(=\) \(\ds -x\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds 0\)


Hence by definition, $z$ is wholly imaginary.

$\Box$


Now suppose $z$ is wholly imaginary.

Then:

\(\ds \overline z\) \(=\) \(\ds 0 - i y\)
\(\ds \) \(=\) \(\ds -i y\)
\(\ds \) \(=\) \(\ds -\left({0 + i y}\right)\)
\(\ds \) \(=\) \(\ds -z\)

$\blacksquare$


Sources