# Complex Numbers form Vector Space over Reals

## Theorem

Let $\R$ be the set of real numbers.

Let $\C$ be the set of complex numbers.

Then the $\R$-module $\C$ is a vector space.

## Proof

Recall that Real Numbers form Field.

Thus by definition, $\R$ is also a division ring.

Thus we only need to show that $\R$-module $\C$ is a unitary module, by demonstrating the module properties:

$\forall x, y, \in \C, \forall \lambda, \mu \in \R$:

$(1): \quad \lambda \paren {x + y} = \paren {\lambda x} + \paren {\lambda y}$
$(2): \quad \paren {\lambda + \mu} x = \paren {\lambda x} + \paren {\mu x}$
$(3): \quad \paren {\lambda \mu} x = \lambda \paren {\mu x}$
$(4): \quad 1 x = x$

As $\lambda, \mu \in \R$ it follows that $\lambda, \mu \in \C$.

Thus from Complex Multiplication Distributes over Addition, $(1)$ and $(2)$ immediately follow.

$(3)$ follows from Complex Multiplication is Associative.

$(4)$ follows from Complex Multiplication Identity is One, as $1 + 0 i$ is the unity of $\C$.

$\blacksquare$