Complex Power/Examples/(2+i)^4
Jump to navigation
Jump to search
Example of Complex Power
- $\paren {2 + i}^4 = -7 + 24 i$
Proof
We have that:
- $\paren {2 + i}^4 = \paren {\paren {2 + i}^2}^2$
Hence:
\(\ds \paren {2 + i} \paren {2 + i}\) | \(=\) | \(\ds \paren {2 \times 2 - 1 \times 1} + \paren {2 \times 1 + 1 \times 2} i\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {4 - 1} + \paren {2 + 2} i\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 3 + 4 i\) |
Then:
\(\ds \paren {3 + 4 i} \paren {3 + 4 i}\) | \(=\) | \(\ds \paren {3 \times 3 - 4 \times 4} + \paren {3 \times 4 + 4 \times 3} i\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {9 - 16} + \paren {12 + 12} i\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -7 + 24 i\) |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1$. Algebraic Theory of Complex Numbers: Exercise $1 \ \text{(iii)}$