Complex Power/Examples/(2+i)^4

From ProofWiki
Jump to navigation Jump to search

Example of Complex Power

$\paren {2 + i}^4 = -7 + 24 i$


Proof

We have that:

$\paren {2 + i}^4 = \paren {\paren {2 + i}^2}^2$


Hence:

\(\ds \paren {2 + i} \paren {2 + i}\) \(=\) \(\ds \paren {2 \times 2 - 1 \times 1} + \paren {2 \times 1 + 1 \times 2} i\)
\(\ds \) \(=\) \(\ds \paren {4 - 1} + \paren {2 + 2} i\)
\(\ds \) \(=\) \(\ds 3 + 4 i\)


Then:

\(\ds \paren {3 + 4 i} \paren {3 + 4 i}\) \(=\) \(\ds \paren {3 \times 3 - 4 \times 4} + \paren {3 \times 4 + 4 \times 3} i\)
\(\ds \) \(=\) \(\ds \paren {9 - 16} + \paren {12 + 12} i\)
\(\ds \) \(=\) \(\ds -7 + 24 i\)

$\blacksquare$


Sources