Composition of Direct Image Mappings of Relations
Jump to navigation
Jump to search
Theorem
Let $A, B, C$ be non-empty sets.
Let $\RR_1 \subseteq A \times B, \RR_2 \subseteq B \times C$ be relations.
Let:
- ${\RR_1}^\to: \powerset A \to \powerset B$
and
- ${\RR_2}^\to: \powerset B \to \powerset C$
be the direct image mappings of $\RR_1$ and $\RR_2$.
Then:
- $\paren {\RR_2 \circ \RR_1}^\to = {\RR_2}^\to \circ {\RR_1}^\to$
Proof
Let $S \subseteq A, S \ne \O$.
Then:
\(\ds \map {\paren { {\RR_2}^\to \circ {\RR_1}^\to} } S\) | \(=\) | \(\ds \map { {\RR_2}^\to} {\map { {\RR_1}^\to } S}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {\map {\RR_2} x: x \in \map { {\RR_1}^\to } S}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {\map {\RR_2} x: \exists y \in S: \tuple {x, y} \in \RR_1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {\map {\RR_2} {\map {\RR_1} y}: y \in S}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {\map {\RR_2 \circ \RR_1} y: y \in S}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\paren {\RR_2 \circ \RR_1}^\to} S\) |
Now we treat the case where $S = \O$:
\(\ds \map {\paren { {\RR_2}^\to \circ {\RR_1}^\to} } \O\) | \(=\) | \(\ds \O\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\paren {\RR_2 \circ \RR_1}^\to} \O\) |
$\blacksquare$