Composition of Mappings/Examples
Examples of Compositions of Mappings
Compositions of $x^2$ with $2 x + 1$
Let $f: \R \to \R$ be the real function defined as:
- $\forall x \in \R: \map f x = x^2$
Let $g: \R \to \R$ be the real function defined as:
- $\forall x \in \R: \map g x = 2 x + 1$
Then the compositions of $f$ with $g$ are:
$f \circ g: \R \to \R$:
- $\forall x \in \R: \map {\paren {f \circ g} } x = \paren {2 x + 1}^2$
$g \circ f: \R \to \R$:
- $\forall x \in \R: \map {\paren {g \circ f} } x = 2 x^2 + 1$
Compositions of $\sin x$ with $2 x + 1$
Let $f: \R \to \R$ be the real function defined as:
- $\forall x \in \R: \map f x = \sin x$
Let $g: \R \to \R$ be the real function defined as:
- $\forall x \in \R: \map g x = 2 x + 1$
Then the compositions of $f$ with $g$ are:
$f \circ g: \R \to \R$:
- $\forall x \in \R: \map {\paren {f \circ g} } x = \map \sin {2 x + 1}$
$g \circ f: \R \to \R$:
- $\forall x \in \R: \map {\paren {g \circ f} } x = 2 \sin x + 1$
Arbitrary Finite Sets
Let:
\(\ds A\) | \(=\) | \(\ds \set {1, 2, 3}\) | ||||||||||||
\(\ds B\) | \(=\) | \(\ds \set {a, b}\) | ||||||||||||
\(\ds C\) | \(=\) | \(\ds \set {u, v, w}\) |
Let $\theta: A \to B$ and $\phi: B \to C$ be defined in two-row notation as:
\(\ds \theta\) | \(=\) | \(\ds \binom {1 \ 2 \ 3} {a \ b \ a}\) | ||||||||||||
\(\ds \phi\) | \(=\) | \(\ds \binom {a \ b} {w \ v}\) |
Then:
- $\phi \circ \theta = \dbinom {1 \ 2 \ 3} {w \ v \ w}$
Arbitrary Finite Set with Itself
Let $X = Y = \set {a, b}$.
Consider the mappings from $X$ to $Y$:
\(\text {(1)}: \quad\) | \(\ds \map {f_1} a\) | \(=\) | \(\ds a\) | |||||||||||
\(\ds \map {f_1} b\) | \(=\) | \(\ds b\) |
\(\text {(2)}: \quad\) | \(\ds \map {f_2} a\) | \(=\) | \(\ds a\) | |||||||||||
\(\ds \map {f_2} b\) | \(=\) | \(\ds a\) |
\(\text {(3)}: \quad\) | \(\ds \map {f_3} a\) | \(=\) | \(\ds b\) | |||||||||||
\(\ds \map {f_3} b\) | \(=\) | \(\ds b\) |
\(\text {(4)}: \quad\) | \(\ds \map {f_4} a\) | \(=\) | \(\ds b\) | |||||||||||
\(\ds \map {f_4} b\) | \(=\) | \(\ds a\) |
The Cayley table illustrating the compositions of these $4$ mappings is as follows:
- $\begin{array}{c|cccc} \circ & f_1 & f_2 & f_3 & f_4 \\ \hline f_1 & f_1 & f_2 & f_3 & f_4 \\ f_2 & f_2 & f_2 & f_2 & f_2 \\ f_3 & f_3 & f_3 & f_3 & f_3 \\ f_4 & f_4 & f_3 & f_2 & f_1 \\ \end{array}$
We have that $f_1$ is the identity mapping and is also the identity element in the algebraic structure under discussion.