Condition for Composite Relation with Inverse to be Identity
Theorem
Let $\RR \subseteq S \times T$ be a relation on $S \times T$.
Let $\RR \circ \RR^{-1}$ be the composite of $\RR$ with its inverse.
Let $I_T$ be the identity mapping on $T$.
Then:
- $\RR \circ \RR^{-1} = I_T$
- $\RR$ is many-to-one
and:
- $\RR$ is right-total.
Proof
Sufficient Condition
Let $\RR \circ \RR^{-1} = I_T$.
Aiming for a contradiction, suppose:
- $\exists t \in T: t \notin \Img \RR$
Then:
- $t \notin \Img {\RR \circ \RR^{-1} }$
But:
- $t \in \Img {I_T}$
by definition of the identity mapping on $T$.
Hence:
- $\RR \circ \RR^{-1} \ne I_T$
From this contradiction we deduce that:
- $\RR \circ \RR^{-1} = I_T \implies T \setminus \Img \RR = \O$
where $T \setminus \Img \RR$ denotes set difference.
So from Set Difference with Superset is Empty Set:
- $T \subseteq \Img \RR$
But from Image is Subset of Codomain we have:
- $T \supseteq \Img \RR$
and so:
- $\Img \RR = T$
which means $\RR$ is right-total.
$\Box$
Suppose $\RR$ is not many-to-one.
Then:
- $\exists s \in S: \exists t_1, t_2 \in T, t_1 \ne t_2: \tuple {s, t_1} \in \RR \land \tuple {s, t_2} \in \RR$
By definition of inverse relation:
- $\exists s \in S: \exists t_1, t_2 \in T: \tuple {t_1, s} \in \RR^{-1} \land \tuple {t_2, s} \in \RR^{-1}$
The composite of $\RR^{-1}$ and $\RR$ is defined as:
- $\RR \circ \RR^{-1} = \set {\tuple {x, z} \in T \times T: \exists y \in S: \tuple {x, y} \in \RR^{-1} \land \tuple {y, z} \in \RR}$
Thus:
\(\ds \tuple {t_1, s}\) | \(\in\) | \(\ds \RR^{-1}\) | ||||||||||||
\(\ds \tuple {s, t_2}\) | \(\in\) | \(\ds \RR\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \tuple {t_1, t_2}\) | \(\in\) | \(\ds \RR \circ \RR^{-1}\) | where $t_1 \ne t_2$ (from above) |
So, by definition of identity mapping:
- $\RR \circ \RR^{-1} \ne I_T$
From this contradiction we deduce that $\RR$ must be many-to-one.
$\Box$
So it has been demonstrated that if:
- $\RR \circ \RR^{-1} = I_T$
then:
- $\RR$ is many-to-one
and
- $\RR$ is right-total.
$\Box$
Necessary Condition
Let:
- $\RR$ be many-to-one
and
- $\RR$ be right-total.
Let $\tuple {t_1, t_2} \in \RR \circ \RR^{-1}$.
The composite of $\RR^{-1}$ and $\RR$ is defined as:
- $\RR \circ \RR^{-1} = \set {\tuple {t_1, t_2} \in T \times T: \exists s \in S: \tuple {t_1, s} \in \RR^{-1} \land \tuple {s, t_2} \in \RR}$
By definition of inverse:
- $\RR \circ \RR^{-1} = \set {\tuple {t_1, t_2} \in T \times T: \exists s \in S: \tuple {s, t_1} \in \RR \land \tuple {s, t_2} \in \RR}$
But $\RR$ is many-to-one, and so:
- $t_1 = t_2$
So:
- $\forall \tuple {t_1, t_2} \in \RR \circ \RR^{-1}: t_1 = t_2$
and so:
- $\RR \circ \RR^{-1} \subseteq I_T$
Now let $t \in T$.
By definition of identity mapping on $T$:
- $\tuple {t, t} \in I_T$
As $\RR$ is right-total:
- $\Img \RR = T$
and so:
- $\exists s \in S: \tuple {s, t} \in \RR$
and so:
- $\exists s \in S: \tuple {t, s} \in \RR^{-1}$
Hence by definition of the composite of $\RR^{-1}$ and $\RR$:
- $\tuple {t, t} \in \RR \circ \RR^{-1}$
So:
- $\RR \circ \RR^{-1} \supseteq I_T$
and so:
- $\RR \circ \RR^{-1} = I_T$
$\Box$
Hence the result.
$\blacksquare$
Examples
Arbitrary Example $1$
In the above we see that:
- $\RR$ is many-to-one
- $\RR$ is right-total
- $\RR \circ \RR^{-1} = I_T$.
Note, however, that $\RR^{-1}$ is neither many-to-one nor right-total, and does not need to be for $\RR \circ \RR^{-1} = I_T$.
Sources
- 1960: Paul R. Halmos: Naive Set Theory ... (previous) ... (next): $\S 10$: Inverses and Composites
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 5$: Composites and Inverses of Functions: Exercise $5.8 \ \text{(e)}$