Condition for Difference of Field Elements to be Zero

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {F, +, \times}$ be a field whose zero is $0_F$.

Let $a, b \in F$


Then:

$a - b = 0_F$

if and only if

$a = b$

where $a - b$ denotes subtraction.


Proof

Necessary Condition

Let $a = b$.

Then:

\(\ds a - b\) \(=\) \(\ds a + \paren {-b}\) Definition of Field Subtraction
\(\ds \) \(=\) \(\ds b + \paren {-b}\) as $a = b$
\(\ds \) \(=\) \(\ds 0_F\) Field Axiom $\text A4$: Inverses for Addition

$\Box$


Sufficient Condition

Let $a - b = 0_F$.

Then:

\(\ds a + \paren {-b}\) \(=\) \(\ds 0_F\) Definition of Field Subtraction
\(\ds \leadsto \ \ \) \(\ds \paren {a + \paren {-b} } + b\) \(=\) \(\ds 0_F + b\) adding $b$ to both sides
\(\ds \leadsto \ \ \) \(\ds a + \paren {\paren {-b} + b}\) \(=\) \(\ds 0_F + b\) Field Axiom $\text A1$: Associativity of Addition
\(\ds \leadsto \ \ \) \(\ds a + 0_F\) \(=\) \(\ds 0_F + b\) Field Axiom $\text A4$: Inverses for Addition
\(\ds \leadsto \ \ \) \(\ds a\) \(=\) \(\ds b\) Field Axiom $\text A3$: Identity for Addition

$\blacksquare$


Sources